
An Artificial Immune Network for Multimodal Function
Optimization on Dynamic Environments

Fabricio Olivetti de França
LBiC/DCA/FEEC

State University of Campinas
(Unicamp)

PO Box 6101, 13083-970
Campinas/SP, Brazil

Phone: +55 19 3788-3885
olivetti@dca.fee.unicamp.br

Fernando J. Von Zuben
LBiC/DCA/FEEC

State University of Campinas
(Unicamp)

PO Box 6101, 13083-970
Campinas/SP, Brazil

Phone: +55 19 3788-3885
vonzuben@dca.fee.unicamp.br

Leandro Nunes de Castro
Research and Graduate Program

in Computer Science,
Catholic University of Santos,

Brazil, Phone/Fax: +55 13 3226
0500

lnunes@unisantos.br

ABSTRACT
Multimodal optimization algorithms inspired by the immune system
are generally characterized by a dynamic control of the population
size and by diversity maintenance along the search. One of the most
popular proposals is denoted opt-aiNet (artificial immune network
for optimization) and is extended here to deal with time-varying
fitness functions. Additional procedures are designed to improve the
overall performance and the robustness of the immune-inspired
approach, giving rise to a version for dynamic optimization, denoted
dopt-aiNet. Firstly, challenging benchmark problems in static mul-
timodal optimization are considered to validate the new proposal.
No parameter adjustment is necessary to adapt the algorithm accord-
ing to the peculiarities of each problem. In the sequence, dynamic
environments are considered, and usual evaluation indices are
adopted to assess the performance of dopt-aiNet and compare with
alternative solution procedures available in the literature.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search – heuristic methods.

General Terms: Algorithms.

Keywords: Immune network, opt-aiNet, multimodal optimiza-
tion, dynamic optimization.

1. INTRODUCTION
Among the many possible applications of artificial immune systems
(AIS) [6], optimization has been receiving particular attention over
the last few years. Within optimization, the emphasis has been on
the use of AIS to perform multimodal and dynamic function optimi-
zation [5],[7],[8],[10],[15]-[17].

The immune system of higher animals (e.g., humans) has a natural
capacity of dealing with complex dynamic environments in which
multiple disease-causing agents are trying to break through the body
barriers and promote damage. Based on some of the biological im-
mune mechanisms of host defense, simple, evolutionary-like im-
mune algorithms have been devised and studied in the context of
global, multimodal and dynamic optimization [5], [7], [8], [10],
[15]-[17].
Despite these seminal works, a broader investigation of the useful-
ness of immune algorithms in the context of multimodal and dy-
namic function optimization has not been performed yet, and the
results available in the literature are still limited. The present paper
corroborates with all the previous works cited above in the direction
of helping to assess the performance and usefulness of AIS for op-
timization. In particular, the optimization version of an immune
network model, called opt-aiNet [7], is improved and extended to
deal with multimodal, dynamic environments.
The modified algorithm, termed here dopt-aiNet (opt-aiNet for dy-
namic environments) is applied to two sets of problems. First, a
large set with 18 numeric benchmark functions, commonly used by
the evolutionary computation (EC) community, is used to assess the
potential of the approach to find global optimal solutions in spaces
of very high dimension. Then, the same version of the dopt-aiNet
algorithm is applied to a set of dynamic functions. In both cases the
results are directly compared with results from the EC community
and those of other immune algorithms.
This paper is organized as follows. Section 2 presents the original
opt-aiNet [7]. Section 3 develops new concepts to improve its capa-
bilities on broader domains still maintaining its efficiency on higher
dimensions, and without losing its main feature of identifying multi-
ple solutions. In Section 4 it is shown several experimental results
and test cases to demonstrate the performance of the algorithm on
solving benchmark problems. Section 5 shows the application to
dynamic environments without any changes on the main algorithm
structure. Section 6 concludes the paper and gives further remarks.

2. THE OPT-AINET ALGORITHM
The opt-aiNet adaptation procedure was first conceived by de Castro
and Timmis [7] as a multimodal function optimization algorithm
developed by taking inspiration from some evolutionary properties
of the human immune system. It is basically a mutation-based evolu-
tionary search procedure with a population with dynamic size allo-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior spe-
cific permission and/or a fee.
GECCO’05, June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006…$5.00.

289

cation. Each individual of the population corresponds to a cell in the
immune system, and is encoded as a real-valued vector in an Euclid-
ean shape-space [13]. Each cell generates a certain number of clones
(identical offspring), which are subjected to a mutation rate in-
versely proportional to the fitness of the parent cell [1]. From time
to time new cells can be generated at random and the affinity of
every cell with each other, that is, the measure of how similar they
are, is indirectly calculated based on their Euclidean distance, and
those that are too similar to each other are left out of the next gen-
eration. The original opt-aiNet algorithm, as introduced by de Castro
and Timmis [7], is summarized in the pseudocode below. The algo-
rithm requires as input parameters the number of clones to be gener-
ated (Nc), the initialization range, the suppression threshold (σs),
and the function to be optimized (f).

Function [C] = opt-aiNet(Nc,range,σs,f)
C = random(range)
While stopping criterion is not met do

fit = f(C)
C’ = clone(C,Nc)
C’ = mutate(C’,fit*)
best_clone = best(C’)
If best_clone is better than c then

c = best_clone
End
Avg = average(f(C))
If the average error doesn’t stagnate then

return to the beginning of the loop
else

suppress(C)
C = [C; random(range)]

End
End
Algorithm 1. Original opt-aiNet algorithm.

At the beginning, Nc cells are generated at random on the given
domain range. The main loop starts, and after the population is
evaluated each individual generates Nc clones that are mutated fol-
lowing Eq. 1.

c' = c + α N(0,1),
α = (1/β) exp(− f*).

(1)

where c' is a mutated cell, N(0,1) is a Gaussian random variable of
mean zero and standard deviation σ = 1, β is a parameter that con-
trols the decay of the inverse exponential function, and f* is the
fitness of an individual normalized in the interval [0,1].
After every clone is mutated, the highest fitness cell within each
clone survives to the next iteration. Whenever the algorithm stag-
nates, that is, when the average error does not improve significantly
after an iterative step, the affinity among cells is calculated and those
cells with affinity less than a pre-specified suppression threshold σs
are eliminated from the population, thus avoiding redundancy.
Then, new cells are generated randomly and introduced into the
population.

3. DOPT-AINET: A MODIFIED OPT-AINET
In the original proposal of opt-aiNet [7], the authors applied the
algorithm to a number of simple bi-dimensional functions with mul-
tiple optimal solutions. Although the performance was good on
these simple functions, some problems have been identified in the
original algorithm [15],[16], such as the need to perform a high
number of function evaluations to find a good set of solutions. After

some experimentation with dynamic environments, we also detected
some aspects to be improved in the algorithm. In summary, four
modifications are proposed here: 1) the use of a separate memory
subpopulation; 2) a line search procedure to optimize and thus
automatically set β; 3) two new mutation operator schemes; 4) a cell
line suppression mechanism; and 5) a limited population size. These
modifications are described in the following.

3.1 Current and Memory Subpopulations
To avoid a performance decay due to an excessive population
growth, two separated populations were created: 1) the current sub-
population, which corresponds to the population used on the origi-
nal algorithm and in which newly created cells are placed; 2) and the
memory subpopulation [5], which corresponds to those cells that
have not evolved during a certain period of time, and thus will be
assumed to have converged to local optimal solutions. To determine
if a cell should go to the memory subpopulation, i.e., should become
a memory cell, each cell receives a rank value that decrements
whenever a mutation does not improve its objective function value,
and increment otherwise. When this rank reaches zero, the cell is
then moved to the memory subpopulation, where it will be treated
with special mutation operators to be described bellow. Addition-
ally, when a cell becomes a memory cell, it receives a new rank that
follows this same process, but when this rank reaches zero the
memory cell does not suffer any mutation whatsoever.

3.2 Line Search
The traditional mutation applied to the algorithm requires a parame-
ter β (Eq. 1) that is a user-defined step size of the direction deter-
mined by the Gaussian random vector. This parameter sometimes
requires a pre-analysis of the function landscape in order to be set
properly. A very small value may lead to slow convergence, and, by
contrast, a very high value may lead to a situation where the resul-
tant mutated cell never converges to an optimum solution. There-
fore, to take the best of each mutation for each Gaussian random
vector generated, a line search procedure, called golden section [4],
is performed to choose the best step size possible (β).
The golden section method basically divides the search space into
two and determines which area is most promising, sub-dividing it
and thus generating new search intervals. The process repeats until
this uncertainty interval reaches a given threshold length. The key
point is how it divides the search space using a ratio called golden
number or golden ratio, which is a proportion number found on
many geometric figures and nature structures.
This procedure is guaranteed to reach a global optimum solution in
a certain direction given that the interval being searched has no
discontinuity, is convex and unimodal. These restrictions stand as a
problem on the use of this method together with opt-aiNet, since the
algorithm does not have any information about the function to be
optimized. To partially solve this problem, the initial segment to be
searched can be divided into four new segments and the golden
section method applied to each of these segments separately; the
best result found is used as β, thus reducing the chance of failure.
Even if this procedure fails to find an optimal β, this will still proba-
bly lead to a better value than the static parameter on the original
algorithm and also, as there is a population of cells, an eventual fail
on this search may not lead to total failure on the whole process.
This procedure was chosen mainly because it has a fast convergence

290

rate and does not require any information about the search space; a
pre-requisite when the algorithm is run for every mutation operation.

3.3 New Mutation Operators
While testing the simple Gaussian mutation proposed by de Castro
and Timmis [7], it was possible to note that a few network cells
sometimes converged to a value that is not a peak (local optima) and
that could not be further improved by this type of mutation. Al-
though an optimal search of β does alleviate this problem, two new
mutation operators are proposed and applied to both populations.

3.3.1 One-Dimensional Mutation
The one-dimensional mutation (Algorithm 2) performs similarly to
the traditional Gaussian mutation but only for one direction at a
time, thus making a finer search on the area surrounding the cell.
Additionally, it is performed the search on the unitary vectors 1
(vectors in which every element is 1) and −−−−1. This method has the
drawback of presenting a slow convergence for high dimensional
spaces. Algorithm 2 describes the one-dimensional mutation, where
D is a matrix of size (n+2) × n containing an Identity Matrix of size
n, a row filled with 1’s and another row filled with −1’s. Parameter
β is the step size obtained via golden section (Section 3.2).

Function [C] = one-dimensional(C,f)
D = [identity(n); 1; -1]
For each vector element “c” of matrix C do,
 For each row “d” of matrix D do,

 % calculate the step size β that
 optimizes the cell in direction d

 beta = golden_section(c,d,f)

c’ = c + d*β
If c’ is better than c then

c = c’
End

 End
End
Algorithm 2. One-dimensional mutation.

3.3.2 Gene Duplication
In nature, a process called gene duplication, where some genes are
duplicated during the process of chromosome reading, sometimes
occur. This is known to play an important role in the evolution of
species [9], [12].
A new mutation based on these observations was developed, where
a randomly chosen element (coordinate) xi is copied into another
element xj whenever it minimizes the objective function (minimiza-
tion problem). Algorithm 3 describes the operator.

Function [x] = gene_duplication(x)
Dup = x[rand(1,n)]
x’ = x;
For each element of x do
 x’[j] = Dup;
 If x’ is better than x then
 x[j] = x’[j]
 Else
 x’[j] = x[j]
 End
End
Algorithm 3. Gene duplication.
The two new mutations proposed work better if the one-dimensional

mutation precedes gene duplication, because the former results in an
improvement of at least one element of the vector, and the latter can
benefit from this improvement.

3.4 Cell Line Suppression
The use of Euclidean distance to indirectly measure the affinity
among cells in opt-aiNet may require some pre-analysis of the func-
tion to be optimized in order to adjust the threshold parameter (σs).
In some cases, it is very hard to determine an appropriate threshold
value. A new algorithm is then proposed to decrease the probability
of having more than one cell located at each peak of the fitness land-
scape, thus reducing redundancy. The cell line suppression algo-
rithm is described as follows (see Figure 1)

Function [X] = cell_line_suppress(X, σs)
For each pair of cells x1,x2 do

P1 = [x1 f(x1)]
P2 = [x2 f(x2)]
P = [x1+0.5(x2-x1) f(x1+0.5(x2-x1))]
v = P2 – P1
w = P – P1
c1 = w.v %dot product of vectors w and v
c2 = |v| %norm of vector v
b = c1/c2 %projection of P on 12 PP

If c1 <= 0, % nearest point is on P1
 d = dist(P,P1)
 Else If c2 <= c1, %nearest point is on P2
 d = dist(P,P2)

Else, %nearest point is at the point

Pb where 12 PPPPb ⊥

 Pb = P1 + b.v
 d = dist(P,Pb)

End

If d < σs then
eliminate the cell with worst objec-

tive function value.
End

End
Algorithm 4. Cell line suppression.

First the line segment

21PP is built from [x1 f(x1)] and [x2 f(x2)], its
middle point is taken and its corresponding function value is calcu-
lated forming point P = [(x1+x2)/2 f((x1+x2)/2)]. Next, the direc-
tion vectors v and w of lines

21PP and
1PP , respectively, are calcu-

lated. Then, to measure the distance from point P to the line segment

21PP , it is first calculated the nearest point from P to P1P2, that is
done by projecting this point into the line segment. If this projection
is outside the line segment, then either the point P1 (when c1 ≤ 0) or
the point P2 (when c1/c2 ≥ 1) is taken, whatever is closer. After that,
the Euclidean distance from these two points is calculated and if it is
less than the threshold σs, one of the two cells are eliminated. This
threshold is much easier to set, since the difference from the distance
of cells that must be eliminated and those that must not is too high.
Experimentally a value σs = 0.5 is a good suggestion.

291

P1

P3

P2

P1

P2

P

Pb

dist = 7.5.10-4

P1

P3

P

dist = 12.69

 (a) (b) (c)

Figure 1. Cell Line Suppression example. In (a) three points must be evaluated, (b) P1 and P2 hold a large similarity (small distance value) and the dis-
tance is measured by the projection point Pb, while in (c) P1 and P3 are too far apart (large distance value) and on this case the projection point is out-

side the line segment, so the point P1 is taken to measure the distance as it is the nearest point between P1 and P3.

3.5 Limited Population
The last modification proposed was developed to deal with func-
tions with too many optimal solutions. In such cases, as the algo-
rithm tends to find every possible optimum, the population expands
along the iterations and may cause an excessive memory usage,
resulting in an increase of convergence time. To avoid this, a maxi-
mum number of cells is pre-defined. When the population of cells
reaches this number, a percentage of the worst fitness cells is elimi-
nated from the current subpopulation.

The resultant dopt-aiNet is summarized in Algorithm 5.

Function [C] = dopt-aiNet(Nc,range,σs,f,max_cells)
C = random(range)
While stopping criterion is not met do

fit = f(C)
C’ = clone(C,Nc)
C’ = mutate(C’,f)
For each cell c from C do,
 If c’ is better than c,
 c.rank = c.rank + 1
 c = c’

Else
 c.rank = c.rank – 1
End
If c.rank == 0,
 Mem = [Mem, c]
End

 End
% These two mutations are only applied to
 cells with rank values greater than zero
C = one-dimensional(C,f)

 C = gene_duplication(C,f)
 Mem = one-dimensional(Mem,f)
 Mem = gene_duplication(Mem,f)

For each cell m from Mem do,
 If m has improved,
 m.rank = m.rank + 1

Else
 m.rank = m.rank – 1
End

 End
Avg = average(f(C))
If the average error does not stagnate

return to the beginning of the loop
else

cell_line_suppress(C, σs)
C = [C; random(range)]

End
If size(C) > max_cells,
 suppress_fitness(C)
End

End
Algorithm 5. dopt-aiNet: an extended version of opt-aiNet for optimiza-
tion in dynamic environments.

4. NUMERICAL EXPERIMENTS
To assess the performance of dopt-aiNet for solving global and mul-
timodal optimization problems, some initial experiments were con-
ducted with a large number of multi-dimensional static functions. A
good performance on static benchmark functions not only validates
the proposal in these circumstances, but also gives an indication that
the algorithm may react with sufficient speed so as to cope with
dynamic environments. The second set of experiments was thus
performed taking into account time-varying functions. In both cases
the results of dopt-aiNet were directly compared with those found in
the literature.

4.1 Static Environments
The application of dopt-aiNet to static environments was performed
by applying it to 18 numeric functions with varying degrees of com-
plexity. The first 11 functions were taken from Leung and Wang
[11], and the last 7 functions were taken from Timmis et al. [16].
The performance will be compared with those provided by the algo-
rithms discussed in the cited references. Two aspects are taken into
account for comparison: 1) the capability of finding the global opti-
mal solution; and 2) the average number of function evaluations to
find the optima. Discussions about the number of optimal solutions
found are also included.

()()∑
=

−=
N

i
ixxf

1
11 sin (2)

()()∑
=

+−=
N

i
ii xxf

1

2
2 102cos10 π (3)

()

−

−−= ∑∑

==

N

i
i

N

i
i x

N
x

N
f

11

2
3 2cos1exp12.0exp20 π (4)

1cos
4000

1
11

2
4 +

−= ∏∑
==

N

i

i
N

i
i i

xxf (5)

()∑
=

 ×−=
N

i

i
i

xixf
1

2
20

5 sinsin
π

 (6)

()∑
=

+−=
N

i
iii xxx

N
f

1

24
6 5161 (7)

() ()()∑
−

=
+ −+−=

1

1

22
17 1100

N

i
iii xxxf (8)

∑
=

=
N

i
ixf

1

2
8

 (9)

292

∏∑
==

+=
N

i
i

N

i
i xxf

11
9

 (10)

∑ ∑
= =

=

N

i

i

j
jxf

1

2

1
10

 (11)

{ }Nixf i ,...,2,1,max11 == (12)

125.0)4.05sin()75.0(2 2
12 −−+−= ππxxf (13)

∑
=

++−=
5

1
13))1sin((

j
jxjjf (14)

10)cos()
8
11(10)65

4
1.5(1

2
1

2
12214 +−+−+−= xxxxf

πππ
 (15)

])80032.0()4513.1[(5.0

))1sin((

.))1sin((

2
2

2
1

5

1
2

5

1
115

++++

+++

++=

∑

∑

=

=

xx

jxjj

jxjjf

j

j

 (16)

])80032.0()4513.1[(

))1sin((

.))1sin((

2
2

2
1

5

1
2

5

1
116

++++

+++

++=

∑

∑

=

=

xx

jxjj

jxjjf

j

j

 (17)

21024

2
21

2
1

4
1

17
xxxxf ++−= (18)

∑∑
==

++++=
5

1
2

5

1
118))1sin((.))1sin((

jj
jxjjjxjjf (19)

The initialization range and the dimension adopted for each of the
first 11 functions follow Leung and Wang [11] (Table 1).

For each function 1,000 iterations of dopt-aiNet were run in 30
independent experiments and the results compared with the follow-
ing methods (see [11] and [16] for details):

Table 1. Initialization range for the benchmark functions.

Function Initialization Range Problem Dimension (N)
f1 [-500, 500]N 30
f2 [-5.12, 5.12]N 30
f3 [-32, 32]N 30
f4 [-600, 600]N 30
f5 [0, π]N 30
f6 [-5, 5]N 100
f7 [-5, 10]N 30
f8 [-100, 100]N 30
f9 [-10, 10]N 30
f10 [-100, 100]N 30
f11 [-100, 100]N 30

o Orthogonal Genetic Algorithm with Quantization (OGA/Q)

[11]: an enhanced GA with quantization.
o Conventional Genetic Algorithm (CGA): the ordinary genetic

algorithm used for comparison with OGA/Q.
o Fast Evolution Strategy (FES) [18]: evolution strategy with

Cauchy mutation.
o Enhanced Simulated Annealing (ESA) [14]: a simulated an-

nealing where large steps are used on high temperatures and
small steps at low temperatures.

o Particle Swarm Optimization (PSO) [2]: a swarm based meta-
heuristic.

o Evolutionary Optimization (EO) [2]: following the same
framework of evolutionary algorithms, it uses only mutation
and selection to evolve a population.

o B-Cell Algorithm (BCA) [16]: another immune system based
algorithm, but this one has a fixed population size, bit-string
representation and uses a contiguous somatic hypermutation.

o Hybrid GA algorithm (HGA) [16]: a genetic algorithm with
hybrid search technique to help improving the solutions.

Tables 2, 3 and 4 summarize the performance of the algorithms
when applied to some of the benchmark functions from Leung and
Wang [11].

Table 2. Performance comparison between dopt-aiNet and opt-aiNet when applied to four benchmark functions from [11].
Mean Objective Function Value Mean no. of Function Evaluations ±±±± std Function Known Global

Value dopt-ainet opt-aiNet dopt-ainet opt-aiNet
f2 0 0 153.54±13.58 3379.3±1040.8 5500000
f4 0 0 340±61.94 7276±2072.5 5500000
f7 0 0 0.2192±0.085 81296±5801.8 5500000
f8 0 0 0 6182.6±1693.4 3109986±362220

Table 3. Performance comparison among dopt-aiNet, OGA/Q and CGA when applied to eleven benchmark functions from [11].
Mean Objective Function Value Mean no. of Function Evaluations ±±±± std Function Known Global

Value dopt-ainet OGA/Q CGA dopt-ainet OGA/Q CGA
f1 −12569.5 −18286 −12569.5 −8444.75 4168.7±4250.9 302166 458653
f2 0 0 0 22.97 3379.3±1040.8 224710 335993
f3 0 0 4.440×10−6 2.69 5563.7±1112.3 112421 336481
f4 0 0 0 1.26 7276±2072.5 134000 346971
f5 −99.27 −99.27 −92.83 −83.27 2318.7±1901.4 302773 338417
f6 −78.33 −78.33 −78.30 −59.05 428460±34992 245930 268286
f7 0 0 0.752 150.79 81296±5801.8 167863 1651448
f8 0 0 0 4.96 6182.6±1693.4 112559 181445
f9 0 0 0 0.79 406150±22774 112612 170955
f10 0 0 0 18.83 10113±3050.1 112576 203143
f11 0 0 0 2.62 119840±6052.8 112893 185373

293

Table 4. Performance of dopt-aiNet, FES and ESA when applied to some benchmark functions from [11].
Mean Objective Function Value Mean no. of Function Evaluations ±±±± std

Function
Known
Global
Value dopt-ainet FES ESA PSO EO dopt-ainet FES ESA PSO EO

f1 −12569.5 −18286 −12556.4 --- --- --- 4168.7±4250.9 900030 --- --- ---
f2 0 0 0.16 --- 47.1345 46.4689 3379.3±1040.8 500030 --- 250000 250000
f3 0 0 0.012 --- --- --- 5563.7±1112.3 150030 --- --- ---
f4 0 0 0.037 --- 0.4498 0.4033 7276±2072.5 200030 --- 250000 250000
f6 −78.33 −−−−78.33 --- --- 11.175 9.8808 428460±34992 250000 250000
f7 0 0 --- 17.1 --- --- 81296±5801.8 --- 188227 --- ---

Table 5. Performance of dopt-aiNet, opt-aiNet, BCA and HGA when applied to the last 7 benchmark functions from [16].
Mean Objective Function Value Mean no. of Function Evaluations ±±±± std

Function
Known
Global
Value dopt-ainet opt-aiNet BCA HGA dopt-ainet opt-aiNet BCA HGA

f12 −1,12 −1,12 −1,12 −1,08±04 −1,12 103.4±26.38 6717±538 3016±2252 6081±4471
f13 −12,06 −12,06 −12,03 −12,03 −12,03 110±0 41419±25594 1219±767 3709±2397
f14 0,4 0,4 0,39 0,4 −0,4 302.4±99.19 6346±4656 4921±31587 30583±28378
f15 −186,73 −186,73 −180,83 −186,73 −186,73 1742.7±1412.3 363528±248161 46433±31587 78490±6344
f16 −186,73 −186,73 −173,16 −186,73 −186,73 1227.6±976.21 346330±255980 426360±32809 76358±11187
f17 −0,35 −0,35 −0,26 −0,91 0,99 442.8±141.82 54703±29701 2862±351 12894±9235
f18 −186,73 −186,73 −186,73 −186,73 −186 349.2±67.15 50875±45530 14654±5277 52581±19095

Table 6. Number of peaks found by dopt-aiNet in 1000 iterations.

Function Number of peaks found
f1 20

f2 18

f3 33

f4 40

f5 20

f6 23

f7 20

f8 22

f9 20

f10 20

f11 30

Table 5 compares the performance of dopt-aiNet with opt-aiNet (as
presented by Timmis et al. [16]), BCA and HGA on the last 7 func-
tions used by Timmis et al. [16]. Table 6 depicts the number of local
optima found by dopt-aiNet, stressing its capability of locating mul-
tiple optimal solutions. As can be observed, dopt-aiNet presented a
good performance, both in terms of number and quality of solutions,
on most problems. Most works from the literature do not present the
standard deviation for the algorithms discussed. However, it is pos-
sible to infer that even the worst case of dopt-aiNet is superior to the
mean of most results from the literature.

4.2 Dynamic Environments
Motivated by the good results obtained for the static benchmark
problems, dopt-aiNet was tested on dynamic environments. There
are some other recent papers that successfully applied immune algo-
rithms on time-varying problems [8],[10],[17]. However, in all cases
the test functions used were simpler than the ones to be investigated
here.
The tests were made based on one of Angeline’s experiments [3], in
which the optima suffer a displacement at every n iterations, as
specified. In Angeline [3], three movements (linear, circular and
Gaussian) and two adjusting parameters (τ and f) were defined, the
amount of displacement (τ) and the update frequency (f), that means
that at every f iterations the function is updated.

The linear movement displaces the optimum by a constant rate at
every iteration update, simply adding ∆k to each variable. The up-
date rule for ∆k is as follows:

∆k = ∆k + τ (20)

where τ is the amount of displacement.
The circular movement displaces the optimum in cycles of 25 units
of time regarding update:

odd for
25
π2τ∆∆

even for
25
π2τ∆∆

ktkk

ktkk

..cos

..sin

+=

+=
(21)

where t is the number of times the function was displaced so far.
Finally, the Gaussian movement displaces the optimum at a Gaus-
sian random rate, updating ∆k as follows:

∆k = ∆k + N(1,0) (22)

As the optima keep moving along the iterations, there is no need for
a memory subpopulation, as the cells will always have a direction to
improve. Thus, the mutation operators described in Sections 3.3.1
and 3.3.2 were run at each iteration on the current subpopulation.
For this set of experiments, it were tested the linear, circular and
Gaussian movements with τ = 0.1 and update rate at every iteration.
A total of 1,000 iterations were run to study the behavior of dopt-
aiNet when dealing with a moving target on some of the functions
studied above. It was calculated the maximum, minimum and aver-
age objective function values and the mean error; that is, the dis-
tance from the best current point to the optimum of each function.
Four functions were used in these experiments: Sphere, Rosenbrock,
Rastrigin, and Griewank, as described below:

∑
=

=
N

i
ixSphere

1

2 (23)

() ()()∑
−

=
+ −+−=

1

1

22
1 1100

N

i
iii xxxRosenbrock (24)

1cos
4000

1
11

2 +

−= ∏∑
==

N

i

i
N

i
i i

xxGriewank (25)

()()∑
=

+−=
N

i
ii xxRastrigin

1

2 10π210cos (26)

294

The initialization range and problem dimension are summarized in
Table 7. All functions have the global optimum equals to 0.

Table 7. Initialization range for the dynamic functions.
Function Initialization Range Problem Dimension (N)
Rastrigrin [-5.12, 5.12]N 30
Griewank [-600, 600]N 30
Rosenbrock [-100, 100]N 30
Sphere [-1.28, 1.28]N 30

Table 8 summarizes the performance of dopt-aiNet when applied to
the four dynamic problems described above, and Figure 2 illustrates
the behavior of the algorithm during the iterative search. The num-
bers within parentheses in Table 8 correspond to the iteration when
dopt-aiNet first identified the global optimum and the maximum,
minimum, mean and error values corresponds to the period between
this iteration to the end. Through the error value it can be inferred
that after the global optimum is found the oscillation around this
point is minimal indicating the capacity of the algorithm to pursue
the moving target.
As can be observed from Figure 2, for all functions, with the excep-
tion of Rosenbrock, dopt-aiNet reached the region surrounding the
global optimum very quickly and oscillated around it while the envi-
ronment was moving. From the four functions tested, Rosenbrock
was the one with higher learning time. This is because it has a large
plateau near the global optimum, making the search more compli-
cated at the neighborhood of the optimum.

Table 8. Max, min, and mean objective function value, together with the
average error for 1,000 iterations.

Function Linear Circular Gaussian
Max 46.76 0.75 0.05
Min 4.16×10−16 8.32×10−16 8.12×10−19
Mean 0.05±1.47 0.13±0.13 7.11×10−4

 Sphere

Error 0.02±0.22 0.32±0.18
(100)

0.02±0.02
(100)

Max 2.59 43.79 0.92
Min 0.14 0.21 0.06
Mean 0.74±0.58 8.49±7.44 0.14±0.19 Rosenbrock

Error 0.50±0.17 (400) 0.57±0.24
(300)

0.22±0.17
(400)

Max 39.56 74.05 55.11
Min 9.4×10−9 0 0
Mean 0.35±1.47 16.05±15.46 0.48±2.62

Rastrigin

Error 0.03±0.16 0.38±0.58 0.03±0.16
Max 1.48 0.02 3.8
Min 0 0 0.01
Mean 0.003±0.06 0.006±0.005 0.04±0.23 Griewank

Error 0.13±1.76 0.33±0.17
(100) 7.57±5.79

5. CONCLUSION
This work proposed several improvements to the opt-aiNet algo-
rithm that not only helped to enhance its capabilities of quickly
finding local optimal solutions and maintaining the cell diversity but

0 100 200 300 400 500 600 700 800 900 1000
10 -8
10 -7
10 -6
10 -5
10 -4
10 -3
10 -2
10 -1
10 0
10 1 Sphere

 0 100 200 300 400 500 600 700 800 900 100
10-1

100

101

102
R osenbrock

(a) (b)

0 100 200 300 400 500 600 700 800 900 1000
10 -6
10 -5
10 -4
10 -3
10 -2
10 -1
10 0
10 1 Rastrigrin

 0 100 200 300 400 500 600 700 800 900 100
0

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102
Griewank

(c) (d)

Figure 2. Performance of the dopt-aiNet on dynamic environments (iterations ×××× log(fitness)). Linear displacement, with step size ττττ = 0.1 and update
frequency f = 1. (a) Sphere. (b) Rosenbrock. (c) Rastrigin. (d) Griewank.

295

also made it capable of dealing with dynamic environments (func-
tion with moving optima). The new procedures include: 1) the use
of a modified golden section method as a local search procedure for
an optimal mutation rate; 2) two new mutation operators to fine-tune
each cell; and 3) a new suppress algorithm based on the approxima-
tion of a line between two points and the corresponding objective
function curve, what provides a better measure of the affinity among
cells.

These modifications were tested and showed to successfully solve
several benchmark static problems with large dimensions. On dy-
namic environments, the behavior of the algorithm was also encour-
aging. In the most difficult situations, dopt-aiNet was able to track
the optima while it changed its position through time.

For future research it must be studied a single suitable mutation to
deal with tracking the optima once this is reached. Also some other
types of dynamic environments must be investigated, for instance,
when some optima disappear and others appear somewhere else, or
when the intensity of peaks and valleys varies. Also, some tests
should be performed on discrete optimization problems.

6. ACKNOWLEDGEMENTS
This work has been supported by grants from Fapesp, CNPq, and
Capes.

7. REFERENCES
[1] Allen, D. et al., Timing, Genetic Requirements and Functional

Consequences of Somatic Hypermutation During B-cell De-
velopment, Imm. Rev., 96, pp. 5-22, 1987.

[2] Angeline, P. J. Evolutionary optimization versus particle
swarm optimization: Philosophy and performance differences,
in Proc. Evol. Prog. VII, V. W. Porto, N. Saravanan, D. Waa-
gen, and A. E. Eiben, Eds. Berlin, Germany: Springer-Verlag,
1998, pp. 601–610.

[3] Angeline, P. J. Tracking extrema in dynamic environments. In
Proceedings of the 6th International Conference on Evolution-
ary Programming (Indianapolis,Indiana, USA, Apr. 13-16
1997), P. J. Angeline, R. G. Reynolds, J. R. McDonnell, and R.
C. Eberhart, Eds., vol. 1213 of Lecture Notes in Computer Sci-
ence,Springer Verlag.

[4] Bazaraa, M. S., Sherali, H. D., and Shetty, C. M., Nonlinear
Programming: Theory and Algorithms, 2nd Ed., Wiley, 1993.

[5] de Castro , L. N. & Von Zuben, F. J., Learning and Optimiza-
tion Using the Clonal Selection Principle , IEEE Transactions
on Evolutionary Computation, Special Issue on Artificial Im-
mune Systems, 6 (3), pp. 239-251, 2002.

[6] de Castro, L. N. and Timmis, J. Artificial Immune Systems: A
New Computational Intelligence Approach, Springer-Verlag.

[7] de Castro, L. N. and Timmis, J. An Artificial Immune Network
for Multimodal Function Optimization. Proceedings of the
IEEE Congress on Evolutionary Computation (CEC’02), Vol.
1, pp. 699-674, May, Hawaii, 2002.

[8] Gaspar, A., Collard, P. From GAs to Artificial Immune Sys-
tems: Improving Adaptation in Time Dependent Optimization.
Proceedings of the Congress on Evolutionary Computation. pp.
1859-1866, Peter J. Angeline and Zbyszek Michalewicz and
Marc Schoenauer and Xin Yao and Ali Zalzal (Eds).

[9] Holland, P. W. H., Garcia-Fernandez, J., Williams, N. A. and
Sidow, A. (1994). Gene duplications and origins of vertebrate
development. Development Supplement, pp. 125-133.

[10] Kelsey, J., Timmis, J., Hone, A. Chasing Chaos. In R. Sarker,
R. Reynolds, H. Abbass, T. Kay-Chen, R. McKay, D. Essam,
and T. Gedeon, editors. Proceedings of the Congress on Evolu-
tionary Computation, pp. 413-419, Canberra. Australia, De-
cember. IEEE.

[11] Leung, Y. and Wang, Y. An Orthogonal Genetic Algorithm
with Quantization for Global Numerical Optimization, IEEE
Trans. Evol. Comput. Vol. 5, No. 1, pp. 41-53, 2001.

[12] Ohno, S. Evolution by Gene Duplication. Allen and Unwin,
London, 1970

[13] Perelson, A. S., Immune Network Theory, Imm. Rev., 110, pp.
5-36, 1989.

[14] Siarry , P., Berthiau, G., Durbin, F. and Haussy, J. Enhanced
simulated annealing for globally minimizing functions of
many-continuous variables. Neural Networks, vol. 3, pp. 467-
483, 1990.

[15] Timmis, J. and Edmonds, C., A Comment on opt-AINet: An
Immune Network Algorithm for Optimisation, In D. Kalyan-
moy et al, editor, Genetic and Evolutionary Computation, vol-
ume 3102 of Lecture Notes in Computer Science, pp. 308-317,
Springer, 2004.

[16] Timmis, J., Edmonds, C., and Kelsey, J. Assessing the Per-
formance of Two Immune Inspired Algorithms and a Hybrid
Genetic Algorithm for Function Optimisation, In Proceedings
of the Congress on Evolutionary Computation, vol. 1, pp.
1044-1051, 2004.

[17] Walker, J., Garrett, S. Dynamic Function Optimisation: Com-
paring the Performance of Clonal Selection and Evolutionary
Strategies. Lecture Notes in Computer Science 2787, pp. 273-
284. Timmis, J., Bentley, P. and Hart, E.(Eds).

[18] Yao, X. and Liu, Y. Fast evolution strategies, in Evolutionary
Programming VI, P. J. Angeline, R. Reynolds, J. McDonnell,
and R. Eberhart, Eds. Berlin, Germany: Springer-Verlag, 1997,
pp. 151–161.

296

